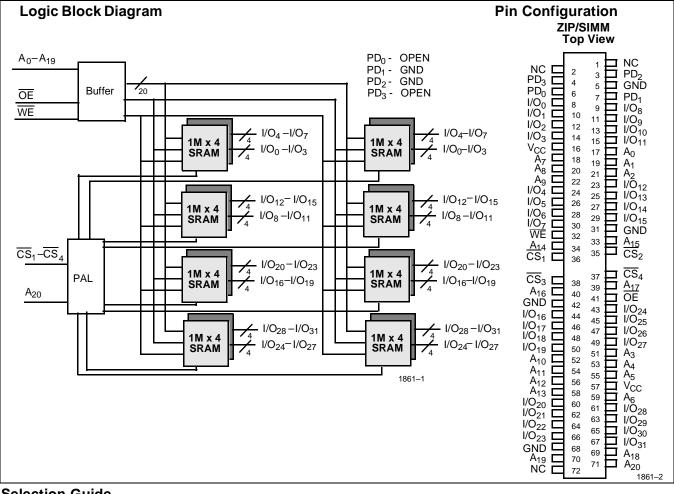


CYM1861

Features

- High-density 64-megabit SRAM module
- 32-bit Standard Footprint supports densities from 16K x 32 through 2M x 32
- High-speed SRAMs
 - Access time of 35 ns
- 72 pins
- Available in SIMM format

Functional Description


The CYM1861 is a high-performance 64-megabit static RAM module organized as 2,048K words by 32 bits. This module is constructed from sixteen 1,024K x 4 SRAMs in SOJ packages mounted on an epoxy laminate substrate. Four chip selects are

2,048K x 32 Static RAM Module

used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.

The CYM1861 is designed for use with standard 72-pin SIMM sockets. The pinout is downward compatible with the 64-pin JEDEC SIMM module family (CYM1821, CYM1836, CYM1836, and CYM1841). Thus, a single motherboard design can be used to accommodate memory depth ranging from 16K words (CYM1821) to 2,048K words (CYM1861). The CYM1861 is offered in vertical SIMM configuration and is available with tin-lead edge contacts.

Presence detect pins (PD_0-PD_3) are used to identify module memory density in applications where modules with alternate word depths can be interchanged.

Selection Guide

1861-25	1861-35
25	35
1200	960
480	480
	25 1200

Shaded area contains advance information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature Ambient Temperature with Power Applied-10°C to +85°C

	1 0
–55°C to +125°C	Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ± 10%

in High Z State.....-0.5V to +V_{CC}

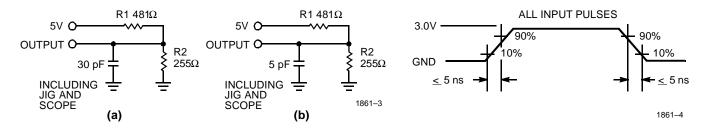
DC Input Voltage-0.5V to +7.0V

DC Voltage Applied to Outputs

Electrical Characteristics Over the Operating Range

Supply Voltage to Ground Potential -0.5V to +7.0V

Parameter	Description	Test Condi	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA		2.4		V
V _{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 8.0 mA			0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage			-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_{I} \leq V_{CC}$		-2	+2	μA
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disabled		-20	+20	μA
I _{CC}	V _{CC} Operating Supply Current	$\frac{V_{CC}}{CS} = Max., I_{OUT} = 0 \text{ mA}, \\ \frac{V_{CC}}{CS} \leq V_{IL}$	-25, -35		2582	mA
I _{SB1}	Automatic CS Power-Down Current ^[1]	Max. V _{CC} , <u>CS</u> ≥ V _{IH} , Min. Duty Cycle = 100%			960	mA
I _{SB2}	Automatic CS Power-Down Current ^[1]	$\label{eq:max_v_CC} \begin{array}{l} \underline{\text{Max}}. \ V_{\text{CC}}, \\ \hline \text{CS} \geq V_{\text{CC}} - 0.2 \text{V}, \\ V_{\text{IN}} \geq V_{\text{CC}} - 0.2 \text{V}, \text{ or} \\ V_{\text{IN}} \leq 0.2 \text{V} \end{array}$	-25, -35		160	mA


Capacitance^[2]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	20	pF

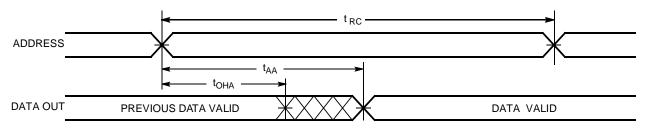
Notes:

1. A pull-up resistor to V_{CC} on the \overline{CS} input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given. 2. Tested on a sample basis.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

> 167Ω OUTPUT O 1.73V o


Switching Characteristics Over the Operating Range^[3]

		186	1861-25		1861-35	
Parameter	Parameter Description			Min.	Max.	Unit
READ CYCLE			1		1	
t _{RC}	Read Cycle Time	25		35		ns
t _{AA}	Address to Data Valid		25		35	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACS}	CS LOW to Data Valid		25		35	ns
t _{DOE}	OE LOW to Data Valid		15		18	ns
t _{LZOE}	OE LOW to Low Z	0		0		ns
t _{HZOE}	OE HIGH to High Z		12		15	ns
t _{LZCS}	CS LOW to Low Z ^[4]	3		3		ns
t _{HZCS}	CS HIGH to High Z ^[4, 5]		12		15	ns
t _{PD}	CS HIGH to Power-Down		25		35	ns
WRITE CYCLE ^[6]	· ·	·				
t _{WC}	Write Cycle Time	25		35		ns
t _{SCS}	CS LOW to Write End	20		30		ns
t _{AW}	Address Set-Up to Write End	20		30		ns
t _{HA}	Address Hold from Write End	3		3		ns
t _{SA}	Address Set-Up to Write Start	2		2		ns
t _{PWE}	WE Pulse Width	20		30		ns
t _{SD}	Data Set-Up to Write End	15		20		ns
t _{HD}	Data Hold from Write End	2		2		ns
t _{LZWE}	WE HIGH to Low Z	3		3		ns
t _{HZWE}	WE LOW to High Z ^[5]	0	12	0	15	ns

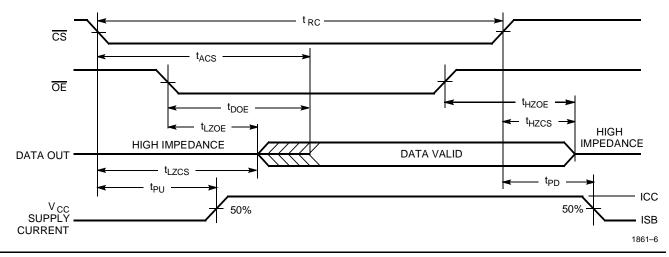
Shaded area contains advance information.

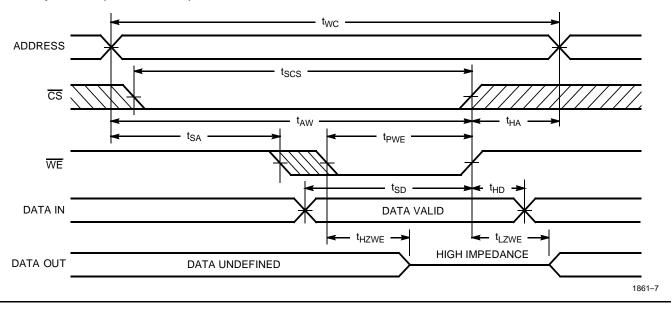
Switching Waveforms

Read Cycle No. 1 ^[7,8]

1861–5

Notes:

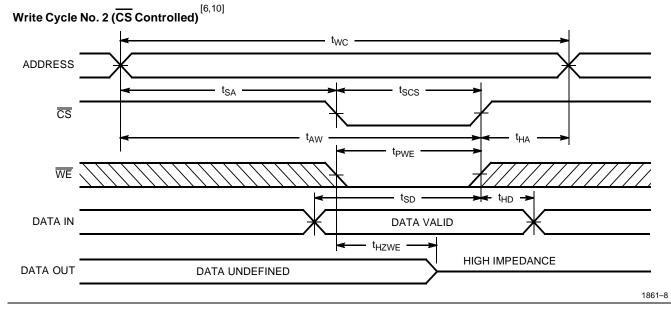

- Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. 3.
- 4.
- 5.
- T_{OLOH} and so-pr load capacitance. At any given temperature and voltage condition, t_{HZCS} is less than t_{LZCS} for any given device. These parameters are guaranteed and not 100% tested. t_{HZCS} and t_{HZWE} are specified with $C_L = 5 \text{ pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. WE is HIGH for read cycle. Device is continuously selected, $\overline{CS} = V_{IL}$, and $\overline{OE} = V_{IL}$. 6.
- 7. 8.


PRELIMINARY

Switching Waveforms (continued)

Read Cycle No. 2 ^[7,9]

Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled)^[6]


Note:

9. Address valid prior to or coincident with $\overline{\text{CS}}$ transition LOW.

PRELIMINARY

Switching Waveforms (continued)

Note:

10. If CS goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

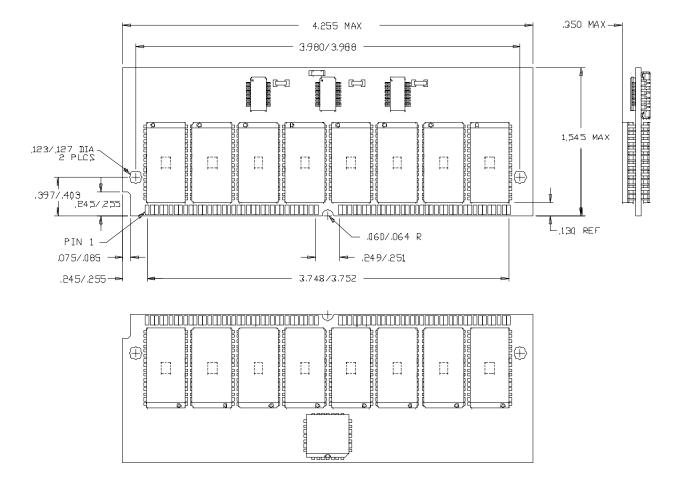
Truth Table

CS	WE	OE	Inputs/Output	Mode
н	Х	Х	High Z	Deselect/Power-Down
L	Н	L	Data Out	Read
L	L	Х	Data In	Write
L	Н	Н	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
25	CYM1861PM-25C	PM48	72-Pin Plastic SIMM Module	Commercial
35	CYM1861PM-35C	PM48	72-Pin Plastic SIMM Module	Commercial

Shaded area contains advance information.


Document #: 38-M-00086

© Cypress Semiconductor Corporation, 1998. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

PRELIMINARY

Package Diagram

72-Pin SIMM Module PM48